Graficul grafic al liniei l din planul xy trece prin punctele (2,5) și (4,11). Graficul grafic al liniei m are o pantă de -2 și o interceptare x a lui 2. Dacă punctul (x, y) este punctul de intersecție al liniilor l și m, care este valoarea lui y?
Y = 2 Pasul 1: Determinați ecuația liniei l Avem prin formula pantă m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 ecuatia este y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Pasul 2: au y = 0. Prin urmare, punctul dat este (2, 0). Cu panta, avem următoarea ecuație. y - y = = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Pasul 3: Scrieți și rezolvați un sistem de ecuații Vrem să găsim soluția sistemului { 3x - 1), (y = -2x + 4):} Prin substituție: 3x - 1 = -2x + 4 5x = 5 x = 1 Aceasta înseamnă că y = 3 (1) - 1 = 2.
Linia n trece prin punctele (6,5) și (0, 1). Care este interceptul y al liniei k, dacă linia k este perpendiculară pe linia n și trece prin punctul (2,4)?
7 este interceptul y al liniei k În primul rând, să găsim panta pentru linia n. (1-5) / (0-6) (-4) / - 6 2/3 = m Înclinația liniei n este 2/3. Aceasta înseamnă panta liniei k, care este perpendiculară pe linia n, este reciprocă negativă de 2/3 sau -3/2. Deci, ecuația pe care o avem până acum este: y = (- 3/2) x + b Pentru a calcula b sau interceptul y, trebuie doar să conectați (2.4) în ecuație. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Astfel interceptul y este 7
Scrieți forma pantă punct a ecuației cu pantă dată care trece prin punctul indicat. A.) linia cu panta -4 care trece prin (5,4). și de asemenea B.) linia cu panta 2 care trece prin (-1, -2). vă rugăm să ajutați, acest lucru confuz?
Y-4 = -4 (x-5) "și" y + 2 = 2 (x + 1)> "ecuația unei linii în" culoare " (X_1, y_1) "un punct pe linia" (A) "dat" m = -4 "și" (x_1, y_1) "(x_1, y_1) = (5,4)" înlocuind aceste valori în ecuație dă "y-4 = -4 (x-5) larrcolor (albastru) = 2 "și" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - în formă de pantă punctată "