
Răspuns:
Consultați explicația de mai jos.
Explicaţie:
a) Domeniul f:
Gama de f:
b) Daca f: ℝ ℝ, atunci f este o functie una la una atunci cand f (a) = f (b) si
a = b, pe de altă parte când f (a) = f (b) dar a b, atunci funcția f nu este una la una, deci în acest caz:
f (-1) = f (1) = 1/2, dar -1 1, de unde funcția f nu este una la una în domeniul său.
Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)?
![Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)? Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)?](https://img.go-homework.com/prealgebra/is-the-square-root-of-13-a-rational-number.png)
12 + 5sqrt12 Înmulțim multiplicarea încrucișată, adică (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) este egală cu sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Timpul rădăcinilor pătrate este egal cu numărul sub rădăcină, astfel încât 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Am pus sqrt2sqrt6 ca dovezi: 24 + (8-3) sqrt6sqrt2 - 12 Putem uni aceste două rădăcini într- nu sunt ambele negative. Deci, primim 24 + 5sqrt12 - 12 În cele din urmă, luăm doar diferența celor două constante și o numim o zi 12 + 5sqrt12
Care este forma simplificată de rădăcină pătrată de rădăcină de 10 - pătrat de 5 peste rădăcină pătrată de rădăcină pătrată + de 5?

(sqrt (10) -sqrt (5)) / sqrt (10) + sqrt (5) = 3-2sqrt (sqrt (10) -sqrt5 sqrt ) culoare (alb) ("XXX") = anula (sqrt (5)) / anula (sqrt (5)) * (sqrt (2) (Sqrt (2) -1) / (sqrt (2) -1) culoarea (alb) ("XXX") = ( sqrt (2) -1) ^ / ((sqrt (2) ^ 2-1 ^ 2) culoare (alb) (XXX) = (2-2sqrt2 + 1) ( "XXX") = 3-2sqrt (2)
Care este rădăcina pătrată de 7 + rădăcină pătrată de 7 ^ 2 + rădăcină pătrată de 7 ^ 3 + rădăcină pătrată de 7 ^ 4 + rădăcină pătrată de 7 ^ 5?

Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Primul lucru pe care il putem face este anularea radacinilor celor cu puteri uniforme. Deoarece: sqrt (x ^ 2) = x și sqrt (x ^ 4) = x ^ 2 pentru orice număr, putem spune că sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) și că 7 ^ 2 poate ieși din rădăcină! Acelasi lucru este valabil si pentru 7 ^ 5 dar este rescris ca 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Acum punem rădăcina în probe, sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +