Răspuns:
Explicaţie:
Dacă un punct final
Cum se utilizează formula intermediară pentru a găsi un punct final?
Aici,
și
Asa de,
Suprafața trapezoidului este de 56 unități². Lungimea de sus este paralelă cu lungimea inferioară. Lungimea maximă este de 10 unități, iar lungimea inferioară este de 6 unități. Cum aș găsi înălțimea?
Zona trapezului = 1/2 (b_1 + b_2) xxh Folosind formula de zonă și valorile date în problemă ... 56 = 1/2 (10 + 6) xxh Acum rezolvați pentru h ... h = 7 unități speranța că a ajutat
Punctul central al unui segment este (-8, 5). Dacă un punct final este (0, 1), care este celălalt punct final?
(X2 = -8, y2 = 5) Apelați AB segmentul cu A (x, y) și B (x1 = 0, y1 = 1) : x2 = (x + x1) / 2 -> x = 2x2 - x1 = 2 (-8) - 0 = - 16 y2 = (y + y1) / 2 - y = 2y2 - y1 = ) - 1 = 9 Celălalt punct final este A (-16, 9) .A --------------------------- M --- ------------------------ B (x, y) (-8, 5) (0, 1)
Perimetrul unui triunghi este de 29 mm. Lungimea primei părți este de două ori lungimea celei de-a doua părți. Lungimea celei de-a treia părți este de 5 mai mult decât lungimea celei de-a doua părți. Cum găsiți lungimile laterale ale triunghiului?
S_1 = 12 s_2 = 6 s_3 = 11 Perimetrul unui triunghi este suma lungimilor tuturor laturilor sale. În acest caz, se dă că perimetrul este de 29 mm. Deci, pentru acest caz: s_1 + s_2 + s_3 = 29 Deci, rezolvând pentru lungimea laturilor, traducem instrucțiuni în forma dată în ecuație. "Lungimea primei părți este de două ori lungimea celei de-a doua părți" Pentru a rezolva acest lucru, atribuim o variabilă aleatoare fie s_1 fie s_2. Pentru acest exemplu, l-aș lăsa x să fie lungimea celei de-a doua părți pentru a evita să aibă fracții în ecuația mea. astfel încât știm că: s_1 = 2s_2 da