Răspuns:
Explicaţie:
Pentru a scrie ecuația unei linii drepte avem nevoie de
Denumiți
Ecuația unui drept care trece printr-un punct
Această linie trece prin
Prin urmare, ecuația este:
Ecuația unei linii este 2x + 3y - 7 = 0, găsiți: - (1) panta liniei (2) ecuația unei linii perpendiculare pe linia dată și care trece prin intersecția liniei x-y + 2 = 0 și 3x + y-10 = 0;
-3x + 2y-2 = 0 culoare (alb) ("ddd") -> culoare (alb) ("ddd") y = 3 / 2x + 1 Prima parte în detaliu demonstrează modul în care funcționează primele principii. Odată ce ați utilizat aceste funcții și utilizând comenzile rapide, veți utiliza mult mai puține linii. ("Determinați interceptarea ecuațiilor inițiale") x-y + 2 = 0 "" ....... Ecuația (1) 3x + y-10 = 0 " 2) Scădeți x de pe ambele părți ale Eqn (1) dând -y + 2 = -x Multiplicați ambele părți prin (-1) + y-2 = + x "" .......... Ecuația ) Utilizarea Eqn (1a) înlocuiește x în Eqn (2)
Întrebarea 2: Linia FG conține punctele F (3, 7) și G (-4, -5). Linia HI conține punctele H (-1, 0) și I (4, 6). Linii FG și HI sunt ...? paralel perpendiculare nici
"nici"> "" folosind următoarele în raport cu pantele liniilor "•" liniile paralele au pante egale "•" produsul liniilor perpendiculare "= -1" calculați pantele m folosind formula "gradient de culoare" (x_1, y_1) = F (3,7) "și" (x_2, y_2) = G (-4, -) 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 "let" "și" (x_2, y_2) = I (4,6) m (HI) = (6-0) / (4 - (- 1)) = 6/5 m (FG) linii nu paralele "m_ (FG) xxm_ (HI) = 12 / 7xx6 / 5! = - 1" astfel liniile nu sunt perpendiculare "" liniile nu sunt nici paralele n
Scrieți ecuația unei linii care conține punctele (2,5) și (-2, -1)?
În primul rând, trebuie să găsim panta liniei folosind următoarea formulă. (y2-y1) / (x2-x1) = (-1-5) / (- 2-2) = (-6) / (- 4) = 3/2 Prin urmare, . Apoi, trebuie să găsim interceptul y prin înlocuirea următorului folosind panta și unul din punctele date. (2,5) y = mx + b 5 = 3/2 (2) + b 5 = 6/2 + b 5-6 / 2 = b 4/2 = bb = 2 Prin urmare, interceptul y este 2. În cele din urmă, scrieți ecuația. y = 3 / 2x +2