Arată cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Eu sunt un pic confuz dacă fac Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), va deveni negativ ca cos (180 ° -theta) al doilea cvadrant. Cum pot să dovedesc această întrebare?
Vedeți mai jos. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ ^ 2 ((4pi) / 10) + cos 2 (pi / 10) + cos ^ 2 ((4pi) / 10) 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Apa se scurge dintr-un rezervor conic inversat la o rată de 10.000 cm3 / min, în același timp, apa este pompată în rezervor cu o viteză constantă. Dacă rezervorul are o înălțime de 6 m, iar diametrul din partea de sus este de 4 m și dacă nivelul apei crește cu o rată de 20 cm / min atunci când înălțimea apei este de 2 m, cum descoperiți rata la care apa este pompată în rezervor?
Fie V volumul de apă din rezervor, în cm3; h este adâncimea / înălțimea apei, în cm; și r este raza suprafeței apei (deasupra), în cm. Din moment ce rezervorul este un convert inversat, tot așa este masa de apă. Deoarece rezervorul are o înălțime de 6 m și o rază în vârful a 2 m, triunghiurile similare implică faptul că frac {h} {r} = frac {6} {2} = 3 astfel încât h = 3r. Volumul conului inversat al apei este V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Acum distingeți ambele părți cu privire la timpul t (în minute) pentru a obține frac {dV} {dt} = 3 pi r ^ {2} cdot fra
Atunci când un polinom este divizat de (x + 2), restul este -19. Atunci când același polinom este împărțit la (x-1), restul este 2, cum determinăm restul atunci când polinomul este împărțit prin (x + 2) (x-1)?
Știm că f (1) = 2 și f (-2) = - 19 din Teorema rămășiței Acum găsim restul polinomului f (x) atunci când este împărțit (x-1) (x + 2) forma Ax + B, deoarece este restul după împărțirea cu un patrat. Putem acum multiplica divizorul ori de la coeficientul Q ... f (x) = Q (x-1) (x + 2) + Ax + B Apoi, inserați 1 și -2 pentru x ... f (1) Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) B = -2A + B = -19 Rezolvând aceste două ecuații, obținem A = 7 și B = -5 Remainder = Ax + B = 7x-5