Răspuns:
Măriți sau micșorați laturile lui A cu același raport.
Explicaţie:
Latura triunghiurilor similare se află în același raport.
Latura de 12 a triunghiului B ar putea corespunde cu oricare dintre cele trei unghiuri din triunghiul A.
Celelalte laturi se găsesc prin creșterea sau scăderea numărului de 12 în același raport cu celelalte laturi.
Există trei opțiuni pentru celelalte două laturi ale triunghiului B:
Triunghiul A:
Triunghiul B:
Triunghiul A are laturi de lungimi 12, 14 și 11. Triunghiul B este similar cu triunghiul A și are o latură a lungimii 4. Care sunt lungimile posibile ale celorlalte două laturi ale triunghiului B?
Celelalte două părți sunt: 1) 14/3 și 11/3 sau 2) 24/7 și 22/7 sau 3) 48/11 și 56/11 Deoarece B și A sunt similare părțile lor sunt în următoarele rapoarte posibile: 4/12 sau 4/14 sau 4/11 1) raport = 4/12 = 1/3: celelalte două laturi ale lui A sunt 14 * 1/3 = 14/3 și 11 * 1/3 = 11/3 ) = 4/14 = 2/7: celelalte două părți sunt 12 * 2/7 = 24/7 și 11 * 2/7 = 22/7; 4/11 = 48/11 și 14 * 4/11 = 56/11
Triunghiul A are laturi de lungimi 1 3, 1 4 și 1 8. Triunghiul B este similar cu triunghiul A și are o latură a lungimii 4. Care sunt lungimile posibile ale celorlalte două laturi ale triunghiului B?
56/13 și 72/13, 26/7 și 36/7 sau 26/9 și 28/9 Deoarece triunghiurile sunt similare, aceasta înseamnă că lungimile laterale au același raport, adică putem multiplica toate lungimile și ia altul. De exemplu, un triunghi echilateral are lungimi laterale (1, 1, 1) și un triunghi similar poate avea lungimi (2, 2, 2) sau (78, 78, 78) sau ceva similar. Un triunghi isoscel poate avea (3, 3, 2), astfel încât un similar poate avea (6, 6, 4) sau (12, 12, 8). Deci, începem cu (13, 14, 18) și avem trei posibilități: (4,?,?), (?, 4,?) Sau (?,?, 4). Prin urmare, ne întrebăm ce sunt rapoartele. Dacă prima, adică l
Triunghiul A are laturi de lungimi 1 3, 1 4 și 11. Triunghiul B este similar cu triunghiul A și are o latură a lungimii 4. Care sunt lungimile posibile ale celorlalte două laturi ale triunghiului B?
Triunghiul A: 13, 14, 11 Triunghiul B: 4,56 / 13,44 / 13 Triunghiul B: 26/7, 4, 22/7 Triunghiul B: 52/11, 56/11, x, y, z, apoi folosiți raportul și proporția pentru a găsi celelalte părți. Dacă prima parte a triunghiului B este x = 4, găsiți y, z rezolvați pentru y: y / 14 = 4/13 y = 14 * 4/13 y = 56/13 `` ` `` `` `` `` `` `` `` `` `` `` `` `` `` `` `` `` `` `` Solvează pentru z: z / 11 = 4/13 z = 13 triunghiul B: 4, 56/13, 44/13 restul sunt aceiași pentru celălalt triunghi B, dacă a doua parte a triunghiului B este y = 4, găsiți soluțiile x și z pentru x: x / 13 = 4/14 x = 13 * 4/14 x = 26/7 rezolvați pentru z: z / 11 = 4