Răspuns:
Explicaţie:
Lăsa
reqd. Parabola desemnată de
Se știe din Geometrie că, dacă
distanța btwn. pt.
pts.
Această proprietate din Parabola este cunoscută sub numele de Activați proprietatea Directrix
din Parabola.
Care este forma standard a ecuației parabolei cu o direcție directă la x = 5 și o concentrare la (11, -7)?
(h + p, k) Directia directa este (hp) = 2 * 12 * (x-8) Având în vedere concentrarea la (11, -7) -> h + p = 11 "și" k = -7 Directrix x = 5 -> hp = 5 h + p = 11 "" "" (eq.2) ul ("folosiți (eq.2) și rezolvă pentru h") "" h = 5 + p "(eq.3) ) pentru a găsi valoarea "p" (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul (" (yk) ^ 2 = 4 * p * (xh) "dă" (y - (- 7)) (X-8) (y + 7) ^ 2 = 12 * (x-8)
Care este forma standard a ecuației parabolei cu o direcție directă la x = -6 și o concentrare la (12, -5)?
(x, y) "la parabola" "distanța de la" (x, y) "la focalizare și directrix" "sunt egale cu" " "culoare (albastru)" formula de distanta "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArrcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = anulați (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Care este forma standard a ecuației parabolei cu o direcție directă la x = -5 și o concentrare la (-7, -5)?
Ecuația parabolei este (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Orice punct (x, y) de pe parabola este echidistant față de directrix și focalizare. Prin urmare, x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (X + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Ecuația parabolei este (y + 5) ^ 2 = (Y + 5) ^ (x + 6) grafice {((y + 5) ^ 2 + 4x + 24) (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,925]}