Care este ecuația liniei care trece prin punctul de intersecție al liniilor y = x și x + y = 6 și care este perpendicular pe linia cu ecuația 3x + 6y = 12?
Linia este y = 2x-3. Mai întâi, găsiți punctul de intersecție dintre y = x și x + y = 6 folosind un sistem de ecuații: y = x = 6 => y = 6-x = x => 6 = x = 3 și din moment ce y = x: => y = 3 Punctul de intersecție a liniilor este (3,3). Acum trebuie să găsim o linie care trece prin punctul (3,3) și este perpendiculară pe linia 3x + 6y = 12. Pentru a găsi panta liniei 3x + 6y = 12, convertiți-o în forma de intersecție înclinată: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Deci panta este -1/2. Pantele liniilor perpendiculare sunt reciprocale opuse, astfel că panta liniei pe care încercăm să o
Care este ecuația liniei verticale care trece prin punctul (-2, 3)?
X = -2 Este un punct în trimestrul II. Linia trece prin acest punct pe verticală. Aceasta presupune că linia este paralelă cu axa Y. Apoi ecuația liniei este x = -2
Scrieți forma pantă punct a ecuației cu pantă dată care trece prin punctul indicat. A.) linia cu panta -4 care trece prin (5,4). și de asemenea B.) linia cu panta 2 care trece prin (-1, -2). vă rugăm să ajutați, acest lucru confuz?
Y-4 = -4 (x-5) "și" y + 2 = 2 (x + 1)> "ecuația unei linii în" culoare " (X_1, y_1) "un punct pe linia" (A) "dat" m = -4 "și" (x_1, y_1) "(x_1, y_1) = (5,4)" înlocuind aceste valori în ecuație dă "y-4 = -4 (x-5) larrcolor (albastru) = 2 "și" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - în formă de pantă punctată "