Răspuns:
Acest punct se află în al patrulea cadran.
Explicaţie:
Pentru a găsi cadranul în care se află punctul, trebuie să vă uitați la semnele coordonatelor sale:
-
Dacă ambele coordonate sunt pozitive, punctul se află în primul cvadrant
-
Dacă
#X <0 # și#Y> 0 # atunci punctul se află în al doilea cvadrant -
Dacă ambele coordonate sunt negative, punctul se află în al treilea cvadrant
-
În cele din urmă dacă
#X> 0 # și#Y <0 # atunci punctul se află în Al patrulea cadran.
Vectorul de poziție A are coordonatele carteziene (20,30,50). Vectorul de poziție al lui B are coordonatele carteziene (10, 40, 90). Care sunt coordonatele vectorului de poziție A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Un copil de înălțime de 2,4 ft este în picioare în fața mirro.his frate de înălțime 4,8 ft este în picioare în spatele him.the înălțimea minimă a oglinzii necesare, astfel încât copilul să poată vedea complet imaginea lui n imaginea fraților lui în oglindă este ?
Mărirea oglinzii plane este 1 deoarece înălțimea imaginii și înălțimea obiectului sunt aceleași. Aici considerăm că oglinda a fost inițial de 2,4 ft înălțime, astfel încât copilul a fost capabil să-și vadă imaginea completă, atunci oglinda trebuie să fie de 4,8 ft lungime, astfel încât copilul să poată privi în sus, unde poate vedea imaginea partea superioară a corpului fratelui său, vizibilă deasupra lui.
P este punctul central al segmentului de linie AB. Coordonatele lui P sunt (5, -6). Coordonatele lui A sunt (-1,10).Cum găsiți coordonatele lui B?
B = (x_2, y_2) = (11, -22) Dacă este cunoscut un punct final (x_1, y_1) și un punct intermediar (a, b) al unui segment de linie, găsiți cel de-al doilea punct final (x_2, y_2). Cum se utilizează formula intermediară pentru a găsi un punct final? (x1, y1) = (- 1, 10) și (a, b) = (5, -6) Deci, (x_2, y_2) = (Culoarea roșie) 10) (x_2, y_2) = (10 + 1) - culoarea (roșu) ((5) -12-10) (x2, y2) = (11, -22) #