Cum găsiți derivatele y = (5x-2) ^ 3 (6x + 1) ^ 2 prin diferențiere logaritmică?

Cum găsiți derivatele y = (5x-2) ^ 3 (6x + 1) ^ 2 prin diferențiere logaritmică?
Anonim

Răspuns:

# y '= (5x-2) ^ 3 (6x + 1) ^ 2 ## ((15) / (5x-2) + (12) / (6x + 1)) #

Explicaţie:

1 / ln (y) = # 3ln (5x-2) + 2nln (6x + 1) #

2/ # (1) / (y) y '# = # (3) ((1) / (5x-2)) (5) + (2) ((1) / (6x + 1)

3/ # (1) / (y) y '# = # (15) / (5x-2) + (12) / (6x + 1) #

4 / y '= y# ((15) / (5x-2) + (12) / (6x + 1)) #

5 / y '= # (5x-2) ^ 3 (6x + 1) ^ 2 ## ((15) / (5x-2) + (12) / (6x + 1)) #