Care este panta unei linii paralele și perpendiculare la 6x + 4y = -4?

Care este panta unei linii paralele și perpendiculare la 6x + 4y = -4?
Anonim

Răspuns:

Vedeți procesul de rezolvare de mai jos:

Explicaţie:

Această ecuație este în formă liniară standard. Forma standard a unei ecuații liniare este: #color (roșu) (A) x + culoare (albastru) (B) y = culoare (verde)

În cazul în care, dacă este posibil, #color (roșu) (A) #, #color (albastru) (B) #, și #color (verde) (C) #sunt numere întregi și A este ne-negativ și A, B și C nu au alți factori comuni decât 1

Panta unei ecuații în formă standard este: #m = -color (roșu) (A) / culoare (albastru) (B) #

O linie paralelă cu această linie va avea aceeași panta ca:

#color (roșu) (6) x + culoare (albastru) (4) y = culoare (verde)

#m = -color (roșu) (6) / culoare (albastru) (4) = -3 / 2 #

Să numim panta liniei perpendiculare # # M_p.

Formula pentru panta unei linii perpendiculare este:

#m_p = -1 / m #

Înlocuirea dă panta liniei perpendiculare ca:

#m_p = -1 / (- 3/2) = 2/3 #