Răspuns:
Explicaţie:
Prin observare, lungimea cea mai lungă ar fi opusă celui mai larg unghi și cea mai scurtă lungime opusă celui mai mic unghi. Cel mai mic unghi, dat fiind cele două, este
Folosind lungimea de 15 ca partea cea mai scurtă, unghiurile de pe fiecare parte a acesteia sunt cele date. Putem calcula înălțimea triunghiului
Acum, celelalte părți sunt:
Astfel, perimetrul maxim este:
Răspuns:
Perimetru
Explicaţie:
lăsa
prin urmare;
utilizând proprietatea sumei unghiulare
Utilizând regula sine
perimetru
Două colțuri ale unui triunghi au unghiuri de (2 pi) / 3 și (pi) / 4. Dacă o parte a triunghiului are o lungime de 12, care este cel mai lung perimetru posibil al triunghiului?
Cel mai lung perimetru posibil este de 12 + 40.155 + 32.786 = 84.941. Deoarece două unghiuri sunt (2pi) / 3 și pi / 4, al treilea unghi este pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Pentru cea mai lunga parte perimetrala a lungimii 12, sa zicem a, trebuie sa fie opus celui mai mic unghi pi / 12 si apoi sa folosim formula sine, alte doua laturi vor fi 12 / (sin (pi / 12)) = b / (sin (2pi) / 3)) = c / (sin (pi / 4)) Prin urmare b = (12sin (2pi) / 3)) / (sin (pi / 12)) = 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 Prin urmare, cel mai lung perimetru posibil este 12 + 40.155 + 32.786 = 84.941.
Două colțuri ale unui triunghi au unghiuri de (2 pi) / 3 și (pi) / 4. Dacă o parte a triunghiului are o lungime de 4, care este cel mai lung perimetru posibil al triunghiului?
P_max = 28.31 unități Problema vă oferă două dintre cele trei unghiuri într-un triunghi arbitrar. Deoarece suma unghiurilor dintr-un triunghi trebuie să adauge până la 180 de grade sau pi radiani, putem găsi al treilea unghi: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Să tragem triunghiul: Problema afirmă că una din laturile triunghiului are o lungime de 4, nu specifică care parte. Cu toate acestea, în orice triunghi dat, este adevărat că partea cea mai mică va fi opusă celui mai mic unghi. Dacă vrem să maximizăm perimetrul, trebuie să facem partea cu
Două colțuri ale unui triunghi au unghiuri de (2 pi) / 3 și (pi) / 4. Dacă o parte a triunghiului are o lungime de 19, care este cel mai lung perimetru posibil al triunghiului?
(P = 19 + 51.909 + 63.5752 = 134.4842) Cele trei unghiuri sunt (2pi) / 3, pi / 4, pi / (19 / sin (pi / 4) = c / sin ((2pi) ) / sin (pi / 12) = 63.5752 Cea mai lungă culoare perimetrală posibilă (verde) (P = 19 + 51.909 + 63.5752 = 134.4842) )