Întrebarea # f9641

Întrebarea # f9641
Anonim

Răspuns:

(x) / sin (x) + sin (x)) "d" x = ln | sin (x)

Explicaţie:

int cos (x) / (sin ^ 2 (x) + sin (x)

Substitui # U = sin (x) # și # "d" u = cos (x) "d" x #. Asta da

# = int ("d" u) / (u ^ 2 + u) #

# = int ("d" u) / (u (u + 1)) #

Separați de fracțiunile parțiale din moment ce # 1 / (u (u + 1)) = 1 / u-1 / (u + 1) #:

# = int (1 / u-1 / (u + 1)) "d" u #

# = Ln | u | -ln | u + 1 | + C #

# = Ln | u / (u + 1) | + C #

Înlocuiți-l înapoi # U = sin (x) #:

# = Ln | sin (x) / (sin (x) +1) | + C #