Răspuns:
Temperatura la care aerul ajunge la 100% umiditate relativă.
Explicaţie:
Cantitatea de aer de vapori de apă poate fi dependentă de temperatura aerului. Cu cât aerul este mai cald, cu atât mai multe vapori de apă se pot menține. Cantitatea de vapori de apă pe care o deține ca procent din cantitatea maximă pe care o poate menține este cunoscută sub numele de umiditate relativă.
Dacă luăm o masă de aer, putem măsura la ce temperatură ar trebui să scadă masele de aer pentru a ajunge la 100% umiditate relativă fără a adăuga vapori de apă.
Motivul pentru care acest lucru este important este că la 100% umiditate relativă avem formare de nori și precipitații.
Grigorie a tras un dreptunghi ABCD pe un plan de coordonate. Punctul A este la (0,0). Punctul B este la (9,0). Punctul C este la (9, -9). Punctul D este la (0, -9). Găsiți lungimea CD-ului lateral?
CD-ul lateral = 9 unități Dacă ignorăm coordonatele y (a doua valoare în fiecare punct), este ușor de constatat că, deoarece partea CD-ul pornește la x = 9 și se termină la x = 0, valoarea absolută este 9: | 0 - 9 | = 9 Amintiți-vă că soluțiile la valori absolute sunt întotdeauna pozitive Dacă nu înțelegeți de ce este, puteți folosi și formula de distanță: P_ "1" (9, -9) și P_ "2" (0, -9 ) În următoarea ecuație, P_ "1" este C și P_ "2" este D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1" (0 - 9) ^ 2 + (-9- (-9)) sqrt ((- 9) ^
Punctul A este la (-2, -8) iar punctul B este la (-5, 3). Punctul A este rotit (3pi) / 2 în sensul acelor de ceasornic cu privire la origine. Care sunt noile coordonate ale punctului A și cât de mult s-a schimbat distanța dintre punctele A și B?
Fie coordonata poarta initiala a lui A, (r, theta) dat coordonata cartela initiala a A, (x_1 = -2, y_1 = -8) Deci putem scrie (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) 2 rotația în sensul acelor de ceasornic, noua coordonată a lui A devine x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (8) = 8 y2 = rsin ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distanța inițială A de la B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) 8, -2) și B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Deci Diferența = sqrt194-sqrt130 consultați și linkul http://socratic.org/questions/point-a -is-la-1-4 și-point-b-este-la-9-2-po
Punctele (-9, 2) și (-5, 6) reprezintă puncte finale ale diametrului unui cerc Care este lungimea diametrului? Care este punctul central al cercului? Având în vedere punctul C pe care l-ați găsit în partea (b), indicați punctul simetric față de C în jurul axei x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centru, C = (-7, 4) 9, 2), (-5, 6) Utilizați formula de distanță pentru a găsi lungimea diametrului: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) - sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Utilizați formula de mijloc pentru a găsiți centrul: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (X, y) -> (x, -y): (-7, 4) punctul simetric în jurul axei x: ( -7, -4)