Răspuns:
Pe pătratul
Explicaţie:
Știm că triunghiul A are unghiuri interne fixe cu informațiile date. Chiar acum suntem interesați doar de unghiul dintre lungimi
Acest unghi este în relația:
De aici:
Cu acest unghi, putem găsi acum lungimea celui de-al treilea braț
Din
Triunghiuri similare vor avea ratele de arme extinse sau contractate cu un raport fix. Dacă un braț se dublează în lungime, celelalte brațe se dublează. Pentru zona cu un triunghi similar, dacă lungimea brațelor este dublă, suprafața este mai mare cu un factor de 4.
Asemănător
Prin urmare, suprafața maximă a lui B este 54 și zona minimă este 15.36.
Triunghiul A are o suprafață de 7 și două laturi cu lungimile 3 și 9. Triunghiul B este similar triunghiului A și are o latură cu o lungime de 7. Care sunt zonele maxime și minime posibile ale triunghiului B?
Suprafața maximă 38.1111 și aria minimă 4.2346 Delta s A și B sunt similare. Pentru a obține suprafața maximă a Deltei B, partea 7 a Deltei B ar trebui să corespundă părții 3 a Deltei A. Sides sunt în raportul 7: 3. Astfel, zonele vor fi în raport de 7 ^ 2: 3 ^ 2 = 49: 9 Aria maximă a triunghiului B = (7 * 49) / 9 = 38.1111 În mod asemănător pentru obținerea zonei minime, partea 9 a Deltei A va corespunde părții 7 a Deltei B. Sides sunt în raport de 7: 9 și ariile 49: 81 Zona minimă Delta B = (7 * 49) / 81 = 4,2346
Triunghiul A are o suprafață de 7 și două laturi cu lungimile 4 și 9. Triunghiul B este similar triunghiului A și are o latură cu o lungime de 7. Care sunt zonele maxime și minime posibile ale triunghiului B?
Suprafața maximă 21,4375 și aria minimă 4,2346 Delta s A și B sunt similare. Pentru a obține suprafața maximă a Deltei B, partea 7 a Deltei B ar trebui să corespundă laturii 4 a Deltei A. Sides sunt în raportul 7: 4. Astfel, zonele vor fi în raport de 7 ^ 2: 4 ^ 2 = 49: 16 Aria maximă a triunghiului B = (7 * 49/16 = 21,4375) În mod asemănător cu obținerea zonei minime, partea 9 a Deltei A va corespunde părții 7 a Deltei B. Sides sunt în raport de 7: 9 și ariile 49: suprafața lui Delta B = (7 * 49) / 81 = 4,2346
Triunghiul A are o suprafață de 9 și două laturi cu lungimile 3 și 8. Triunghiul B este similar triunghiului A și are o latură cu o lungime de 7. Care sunt zonele maxime și minime posibile ale triunghiului B?
Suprafața maximă posibilă a triunghiului B = 49 Suprafața minimă posibilă a triunghiului B = 6,8906 Delta s A și B sunt similare. Pentru a obține suprafața maximă a Deltei B, partea 7 a Deltei B ar trebui să corespundă părții 3 a Deltei A. Sides sunt în raportul 7: 3. Astfel, zonele vor fi în raport de 7 ^ 2: 3 ^ 2 = 49: 9 Aria maximă a triunghiului B = (9 * 49) / 9 = 49 Similar cu obținerea zonei minime, partea 8 a Deltei A va corespunde părții 7 a Deltei B. Sferele sunt în raport 7: 8 și zonele 49: 64 Zona minimă Delta B = (9 * 49) / 64 = 6.8906