
Răspuns:
Utilizați teorema lui Pythagoras
Explicaţie:
Teorema afirmă că -
Într-un triunghi cu unghi drept, pătratul hypotenusei este același cu suma pătratelor celorlalte două laturi.
În întrebare, este prezentat un triunghi dur, dreptunghiular.
asa de
speranța că a ajutat!
Înălțimea lui Jack este de 2/3 din înălțimea lui Leslie. Înălțimea lui Leslie este de 3/4 din înălțimea lui Lindsay. Dacă Lindsay are o înălțime de 160 cm, găsiți înălțimea lui Jack și înălțimea lui Leslie?

Leslie's = 120cm și înălțimea lui Jack = 80cm Înălțimea lui Leslie = 3 / cancel4 ^ 1xxcancel160 ^ 40/1 = 120cm Înălțimea cricurilor = 2 / cancel3 ^ 1xxcancel120 ^ 40/1 = 80cm
Care este rata de schimbare a lățimii (în ft / sec) atunci când înălțimea este de 10 picioare, dacă înălțimea scade în acel moment la viteza de 1 ft / sec. Un dreptunghi are atât o înălțime schimbătoare, cât și o lățime în schimbare , dar înălțimea și lățimea se modifică astfel încât suprafața dreptunghiului să fie întotdeauna de 60 de metri pătrați?

Rata de schimbare a lățimii cu timpul (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dw) / dh dx dt dt (DW) / (dh) / (dw) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / (dt) = - (60) / (h ^ 2)) = (60) / (h ^ 2) Deci atunci când h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
O lumină stradală se află în vârful unui pol înalt de 15 picioare. O femeie înaltă de 6 picioare se îndepărtează de stâlp cu o viteză de 4 ft / sec de-a lungul unei căi drepte. Cât de repede este vârful umbrei ei când se află la 50 de metri de la baza polului?

D '(t_0) = 20/3 = 6, bar6 ft / s Utilizarea teoremei Thales Proporționalitate pentru triunghiurile AhatOB, AhatZH Triunghiurile sunt similare deoarece au hatO = 90 °, hatZ = 90 ° și BhatAO în comun. Avem (AZ) / (AO) = (HZ) / (OB) <=> ω / (ω + x) = 6/15 <=> 15ω = 6 (3x) / 3 = (5x) / 3 d (t) = 3x = 3x (x) (5x (t)) / 3 d '(t) = (5x' (t)) / 3 Pentru t = t_0, x '(t_0) = 4 ft / s Prin urmare, d' (t_0) t_0)) / 3 <=> d '(t_0) = 20/3 = 6, bar6 ft / s