Care este ecuația liniei care trece prin punctul (1,5) și este perpendiculară pe graficul x + 2y = 4?

Care este ecuația liniei care trece prin punctul (1,5) și este perpendiculară pe graficul x + 2y = 4?
Anonim

Răspuns:

# Y = 1 / 2x + 4.5 #

Explicaţie:

În primul rând, trebuie să rezolvăm # X + 2y = 4 # pentru # Y # (există mai multe modalități de a face acest lucru.)

permite scăderea #X# de ambele părți pentru a putea ajunge # 2y = -x + 4 #

acum ne împărțim împărți toți termenii cu 2 pentru a obține # Y # de la sine.

ecuația noastră ar trebui să fie acum # Y = -2x + 2 #

Orice întrebare care vă cere o linie perpendicular la altul, trebuie să știți că panta liniei noi va fi negativ reciproc al pantei date.

În cazul tău, opusul # # -2x este # -1 / 2x # și apoi vom multiplica acest lucru cu un negativ, pentru a obține # 1 / 2x #

De aici, aveți suficiente informații pentru a rezolva problema folosind formularul de pană punct. care este # Y-y1 = m (x-x1) #

Acum conectăm ceea ce ni se dă: # # Y1 este de 5 (din punctul dat în întrebare), # M # este noua noastră pantă, # 1 / 2x # și # # X1 este 1 (din punctul dat în întrebare)

Acum ar trebui să fie ecuația noastră # Y-5 = 1/2 (x-1) #

Apoi, distribuim # 1/2 (x-1) # a obține # 1 / 2x-1/2 #

Prin acest punct, ecuația noastră este # Y-5 = 1 / 2x-1/2 #

ultimul nostru pas este de a adăuga #5# la ambele părți.

Primim # y = 1/2 x 4 1/2 # care este la fel ca # Y = 1 / 2x + 4.5 #