Răspuns:
Vedeți un proces de soluție de mai jos:
Explicaţie:
Formula pentru găsirea pantei unei linii este:
Unde
Înlocuirea valorilor din punctele din problemă dă:
O linie trece prin (8, 1) și (6, 4). O a doua linie trece prin (3, 5). Care este un alt punct pe care linia a doua poate trece, dacă este paralel cu prima linie?
(1,7) Deci, mai întâi trebuie să găsim vectorul de direcție între (8,1) și (6,4) (6,4) - (8,1) = (2,3) Știm că o ecuație vector este alcătuit dintr-un vector de poziție și un vector de direcție. Știm că (3,5) este o poziție pe ecuația vectorului, astfel încât să putem folosi ca vector de poziție și știm că este paralel cu cealaltă linie, astfel încât să putem folosi acel vector de direcție (x, y) = (3, 4) + s (-2,3) Pentru a găsi un alt punct pe linie, înlocuiți orice număr în s în afară de 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Deci (1,7) este un alt punct.
Trece prin (2,4) și (4,10) Găsiți panta liniei care trece prin cele două puncte?
Aplicați formula de panta: m = (y_2-y_1) / (x_2-x_1) Dată (2,4) și (4,10) Let (culoare (roșu) 4)) -> (culoarea (roșu) (x_1), culoarea (albastru) (y_1)) (culoarea (roșu) (4) = culoare (albastru) 6 / culoare (roșu) (2) Înlocuindu-se pentru formula pantă ... m = = 3
Scrieți forma pantă punct a ecuației cu pantă dată care trece prin punctul indicat. A.) linia cu panta -4 care trece prin (5,4). și de asemenea B.) linia cu panta 2 care trece prin (-1, -2). vă rugăm să ajutați, acest lucru confuz?
Y-4 = -4 (x-5) "și" y + 2 = 2 (x + 1)> "ecuația unei linii în" culoare " (X_1, y_1) "un punct pe linia" (A) "dat" m = -4 "și" (x_1, y_1) "(x_1, y_1) = (5,4)" înlocuind aceste valori în ecuație dă "y-4 = -4 (x-5) larrcolor (albastru) = 2 "și" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - în formă de pantă punctată "