Rădăcină pătrată de 32 + 4 rădăcină 15?

Rădăcină pătrată de 32 + 4 rădăcină 15?
Anonim

Răspuns:

#sqrt (32 + 4sqrt (15)) = sqrt (2) + sqrt (30) #

Explicaţie:

Presupunând că vrei să spui #sqrt (32 + 4sqrt (15)) #

Să vedem ce se întâmplă atunci când ești pătrat # A + bsqrt (15) #:

(a + bsqrt (15)) ^ 2 = (a ^ 2 + 15b ^ 2) + 2ab sqrt (15)

Rețineți că ne-ar plăcea # a ^ 2 + 15b ^ 2 = 32 #, dar dacă încercăm mici valori întregi ne-negative negative #a, b #, atunci #b în {0, 1} # și, prin urmare # A = sqrt (32) # sau # A = sqrt (17) #.

Cu toate acestea, rețineți că dacă am pus #a = b = sqrt (2) # atunci:

# a ^ 2 + 15b ^ 2 = 2 + 30 = 32 # și # 2ab = 2 * 2 = 4 # după cum este necesar.

Asa de:

#sqrt (32 + 4sqrt (15)) = sqrt (2) + sqrt (2) sqrt (15)