O limită ne permite să examinăm tendința unei funcții în jurul unui anumit punct chiar și atunci când funcția nu este definită în acest punct. Să ne uităm la funcția de mai jos.
Întrucât numitorul său este zero atunci când
Acest instrument este foarte util în calcul atunci când panta unei linii tangente este aproximată de pantele liniilor secante cu puncte de intersecție apropiate, ceea ce motivează definiția derivatului.
Un copil de înălțime de 2,4 ft este în picioare în fața mirro.his frate de înălțime 4,8 ft este în picioare în spatele him.the înălțimea minimă a oglinzii necesare, astfel încât copilul să poată vedea complet imaginea lui n imaginea fraților lui în oglindă este ?
Mărirea oglinzii plane este 1 deoarece înălțimea imaginii și înălțimea obiectului sunt aceleași. Aici considerăm că oglinda a fost inițial de 2,4 ft înălțime, astfel încât copilul a fost capabil să-și vadă imaginea completă, atunci oglinda trebuie să fie de 4,8 ft lungime, astfel încât copilul să poată privi în sus, unde poate vedea imaginea partea superioară a corpului fratelui său, vizibilă deasupra lui.
Care este rata de schimbare a lățimii (în ft / sec) atunci când înălțimea este de 10 picioare, dacă înălțimea scade în acel moment la viteza de 1 ft / sec. Un dreptunghi are atât o înălțime schimbătoare, cât și o lățime în schimbare , dar înălțimea și lățimea se modifică astfel încât suprafața dreptunghiului să fie întotdeauna de 60 de metri pătrați?
Rata de schimbare a lățimii cu timpul (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dw) / dh dx dt dt (DW) / (dh) / (dw) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / (dt) = - (60) / (h ^ 2)) = (60) / (h ^ 2) Deci atunci când h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
În timp ce întreb, am putea avea și o secțiune în Calcul, Limite pentru Teorema Squeeze? Cred că ar trebui să meargă după limite la asimptotele Infinity și Horizonatal.
Sugestii minunate! Consultați curriculumul actualizat aici: http://socratic.org/calculus/topics