Răspuns:
Explicaţie:
Utilizarea regulii bazei de jurnal:
Acest lucru a fost făcut fără
1 = x ^ 5 Rezolva pentru x Cum s-ar rezolva aceasta?
1 x = 5 = 1 x = rădăcină (5) 1 x = 1 Aceasta se întâmplă deoarece 1 ^ 5 = 1 * 1 * 1 * 1 * 1 = 1
Dovada că a ^ 3 + b ^ 3 + c ^ 3-3abc = (a + b + c) (a ^ 2 + b ^ 2 + c ^ 2-ab-bc-ca). Cum pot rezolva aceasta fără a extinde totul? THX
Consultați Explicația. Se știe că (a + b) ^ 3 = a ^ 3 + b ^ 3 + 3ab (a + b). :. a ^ 3 + b ^ 3 = (a + b) ^ 3-3ab (a + b) ............................ ..(stea). Setarea, (a + b) = d, "avem," a ^ 3 + b ^ 3 = d ^ 3-3abd. :. ul (a ^ 3 + b ^ 3) + c ^ 3-3abc, = d ^ 3-3abd + c ^ 3-3abc, (d + c)) - 3ab (d + c) ............ [deoarece, (stea)], = (d + c) (D + c) (dc + ab), = (d + c) {(d + c) (a + b + c) {(a + b) ^ 2 + c ^ 2 + c ^ 2-3dc-3ab} (a + b) c-3ab} ... [deoarece, d = a + b], = (a + b + c) 2-ac-bc-3ab}. = (a + b + c) (a ^ 2 + b ^ 2 + c ^ 2-ab-bc-ca) Bucurați-vă de matematică. și răspândiți bucuria!
Rezolvă x²-3 <3. Acest lucru pare simplu, dar nu am putut obține răspunsul corect. Răspunsul este (- 5, -1) U (1, 5). Cum de a rezolva această inegalitate?
Soluția este că inegalitatea ar trebui să fie abs (x ^ 2-3) <culoare (roșu) (2) Ca de obicei cu valori absolute împărțite în cazuri: Cazul 1: x ^ 2 - 3 <0 Dacă x ^ <0 atunci abs (x ^ 2-3) = - (x ^ 2-3) = -x ^ 2 + 3 și inegalitatea noastră (corectată) devine: -x ^ 2 + 3 < ambele părți pentru a obține 1 <x ^ 2 Deci x în (-oo, -1) uu (1, oo) Din condiția cazului avem x ^ 2 <3, deci x în (-sqrt (3) (3)) Prin urmare, x în (-sqrt (3), sqrt (3)) nn ((-oo, -1) uu (1, oo)) = (-sqrt , xrt2 (3) x 2 - 3> = 0 Dacă x ^ 2 - 3> = 0 atunci abs (x ^ 2-3) = x ^ 2 + 3 și inegalitatea noastră co