Care este ecuația în formă standard a unei linii perpendiculare care trece prin (5, -1) și care este interceptul x al liniei?
Vedeți mai jos pașii pentru a rezolva o astfel de întrebare: În mod normal, cu o întrebare de genul asta am avea o linie pentru a lucra cu asta, de asemenea, trece prin punctul dat. Din moment ce nu ni se dă acest lucru, o voi face și apoi vom continua cu întrebarea. Linia originală (așa-numita ...) Pentru a găsi o linie care trece printr-un anumit punct, putem folosi forma pantei punctuale a unei linii, forma generală a căreia este: (y-y_1) = m (x-x_1 ) Voi stabili m = 2. Linia noastră are apoi o ecuație de: (y - (- 1)) = 2 (x-5) => y + 1 = 2 (x-5) 11 și formularul standard: 2x-y = 11 Pentru a găsi
Care este ecuația liniei care este perpendiculară pe 2y = -6x + 8 dacă interceptul y este 5?
Y = 1 / 3x + 5 Dată - 2y = -6x + 8 y = (- 6) / 2 x + 8/2 y = -3x + 4 Panta acestei linii este m_1 = 0, 5) Această linie este perpendiculară pe linia y = -3x + 4 Găsiți panta celeilalte linii - m_2 este panta celeilalte linii. Pentru ca două linii să fie perpendiculare - m_1 xx m_2 = -1 Atunci m_2 = (- 1) / (- 3) = 1/3 Ecuația este y = mx + c y = 1 / 3x + 5
Care este ecuația liniei care trece prin punctul de intersecție al liniilor y = x și x + y = 6 și care este perpendicular pe linia cu ecuația 3x + 6y = 12?
Linia este y = 2x-3. Mai întâi, găsiți punctul de intersecție dintre y = x și x + y = 6 folosind un sistem de ecuații: y = x = 6 => y = 6-x = x => 6 = x = 3 și din moment ce y = x: => y = 3 Punctul de intersecție a liniilor este (3,3). Acum trebuie să găsim o linie care trece prin punctul (3,3) și este perpendiculară pe linia 3x + 6y = 12. Pentru a găsi panta liniei 3x + 6y = 12, convertiți-o în forma de intersecție înclinată: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Deci panta este -1/2. Pantele liniilor perpendiculare sunt reciprocale opuse, astfel că panta liniei pe care încercăm să o