Care este aria de sub curba polară f (theta) = theta-thetasin ((7theta) / 8) -cos ((5theta) / 3 + pi / 3) peste [pi / 6, (3pi) / 2]?

Care este aria de sub curba polară f (theta) = theta-thetasin ((7theta) / 8) -cos ((5theta) / 3 + pi / 3) peste [pi / 6, (3pi) / 2]?
Anonim

Răspuns:

#color (roșu) ("Zona A" = 25.303335481 "" "unități pătrate") #

Explicaţie:

Pentru coordonatele polar, formula pentru zona A:

Dat # r = theta-theta * sin ((7theta) / 8) -cos ((5theta) / 3 + pi / 3) #

# A = 1/2 int_alpha ^ beta r ^ 2 * d theta #

# A = 1/2 int_ (pi / 6) ^ (3pi) / 2) (theta-theta * sin ((7teta) teta #

(A / i) / cos + 2 ((5t) / 3 + (2) pi / 3) #

# -2 * theta ^ 2 * sin ((7theta) / 8) + 2 * Theta * cos ((5theta) / 3 + pi / 3) * sin ((7theta) / 8) ## 2 * theta * cos ((5theta) / 3 + pi / 3) d theta #

După o anumită transformare trigonometrică și integrarea prin părți, aceasta urmează

# A = 1/2 theta ^ 3/3 + theta ^ 3 / 6-2 / 7 * theta ^ 2 * sin ((7theta) / 4) -16 / 49 * theta * cos ((7theta) / 4) + 64/343 * sin ((7theta) / 4) + theta / 2 + 3/20 * sin ((10theta) / 3 + (2pi) / 3) #

# + 16/7 * theta ^ 2 * cos ((7theta) / 8) -256 / 49 ° theta * sin ((7theta) / 8) -2048 / 343 * cos ((7theta) / 8) -24/61 * teta * cos ((61theta) / 24 + pi / 3) + 576/3721 * sin ((61theta) / 24 + pi / 3) #

# + 24/19 * theta * cos ((19theta) / 24 + pi / 3) -576/361 * sin ((19theta) / 24 + pi / 3) ## -6/5 * theta * sin ((5theta) / 3 + pi / 3) -18 / 25 * cos ((5theta) / 3 + pi / 3) _ (pi / 6) ^ ((3pi) / 2) #

# A = 1/2 * 43.22026786 - (- 7.386403099) #

# A = 1/2 * (50.60667096) #

#color (roșu) ("Zona A" = 25.303335481 "" "unități pătrate") #

Dumnezeu să binecuvânteze … Sper că explicația este utilă.