Lăsa
Prin rescrierea în formă exponențială,
Asa de,
Prin urmare, produsul a două numere complexe poate fi interpretat geometric ca o combinație a produsului valorilor lor absolute (
Sper că acest lucru a fost clar.
Cel mai mare dintre cele două numere este de 23 de ori mai mic decât de două ori mai mic. Dacă suma celor două numere este de 70, cum găsiți cele două numere?
39, 31 Fie L & S numerele mai mari și mai mici respectiv prima condiție: L = 2S-23 L-2S = -23 .......... (1) A doua condiție: L + S = 70 ........ (2) Se scade (1) de la (2), obținem L + S- (L-2S) = 70- (- 23) în (1), obținem L = 2 (31) -23 = 39 Prin urmare, numărul mai mare este de 39 și numărul mai mic este de 31
Produsul cu două numere întregi consecutive este 24. Găsiți cele două numere întregi. Răspundeți sub formă de puncte pereche, cu cel mai mic dintre cele două numere întregi. Răspuns?
Cele două numere consecutive, chiar întregi: (4,6) sau (-6, -4) Fie culoarea (roșu) (n și n-2 sunt cele două numere consecutive, n-2 este 24 ie n (n-2) = 24 => n ^ 2n-24 = 0 Acum, [(-6) + 4 = -2 și (-6) xx4 = (N-6) (n + 4) = 0: n-6 = 0 sau n (n-6) + 4 = 0 ... până la [n inZZ] => culoare (roșu) (n = 6 sau n = -4 (i) = 6-2 = culoare (roșu) (4) Deci, cele două numere consecutive, chiar întregi: (4,6) (ii)) culoare roșie n = = -4-2 = culoare (roșu) (- 6) Deci, cele două numere consecutive, chiar și: (- 6, -4)
Două numere întregi au o sumă de 16. Unul dintre numere întregi este mai mult decât celălalt. Care sunt celelalte două numere întregi?
Numerele întregi sunt 10 și 6 Să fie întregi x și y Suma întregilor este 16 x + y = 16 (ecuația 1) Un număr întreg este mai mult decât 4 = = x = y + 4 în Ecuația 1 x + y = 16 => y + 4 + y = 16 => 2y + 4 = 16 => 2y = 12 => y = 6 și x = y + 4 = 6 + 4 x = 10