Răspuns:
Consultați dovada de mai jos
Explicaţie:
Să începem prin calcularea
Începem cu
Multiplicarea și rearanjarea
Rezolvarea pentru
În mod similar, cu
Fie A să fie (-3,5) și B să fie (5, -10)). Găsiți: (1) lungimea barei de segment (AB) (2) punctul P al barei (AB) (3) punctul Q care împarte bara (AB) în raportul 2: 5?
(1) lungimea barei de segment (AB) este 17 (2) Punctul central al barei (AB) este (1, -7 1/2) raportul 2: 5 sunt (-5 / 7,5 / 7) Dacă avem două puncte A (x_1, y_1) și B (x_2, y_2), lungimea barei (AB) (2), iar coordonatele punctului P care divizează bara de segmente (AB) care unește aceste două puncte în raportul l: m sunt ((lx_2 + mx_1) / (l + m), (lx_2 + mx_1) / (l + m)) și ca segment divizat în mijloc în raport 1: 1, coordonatele sale ar fi ((x2 + x_1) / 2, A (-3,5) și B (5, -10) (1) lungimea barei de segment (AB) este sqrt ((5 - 2) = sqrt (8 ^ 2 + (- 15) ^ 2) = sqrt (65 + 225) = sqrt289 = 17 (2) 5) / 2) s
Lăsați ca pălăria (ABC) să fie un triunghi, bară de întindere (AC) la D astfel încât bara (CD) bar (CB); întindeți și bara (CB) în E astfel încât bara (CE) bar (CA). Segmentele bar (DE) și bar (AB) se întâlnesc la F. Arată că pălăria (DFB este isoscele?
Dupa cum urmeaza Ref: Figura "In" DeltaCBD, bar (CD) ~ = bar (CB) => CBD = / CDB "Din nou in DeltaABC si DeltaDEC bar (CE) ~ = "bară (CD) ~ = bar (CB) ->" prin construcție "" And "/ _DCE =" verticală opusă "/ _BCA" De aici "DeltaABC ~ = DeltaDCE => EDC = _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "
Începeți cu DeltaOAU, cu bara (OA) = a, extindeți bara (OU) astfel încât bara (UB) = b, cu B pe bara (OU). Construiți o bară paralelă la bar (UA) intersectând bara (OA) la C. Arată că, bar (AC) = ab?
Vezi explicația. Desenați o linie UD, paralelă cu AC, așa cum se arată în figură. => UD = AC DeltaOAU și DeltaUDB sunt similare, => (UD) / (UB) = (OA) / (OU) => (UD) (demonstrat)"