Răspuns:
O formulă detaliată pentru zona unui cilindru circular drept și dovada acestuia sunt furnizate la Unizor la elementele de meniu Geometrie - Cilindri - Zona și volumul.
Explicaţie:
Suprafața completă a unui cilindru drept al unei raze
Prelegerea de pe site-ul web menționat mai sus conține o dovadă detaliată a acestei formule.
Înălțimea unui cilindru circular cu un volum dat variază invers ca pătrat al razei bazei. De câte ori este mai mare raza unui cilindru de 3 m înălțime decât raza unui cilindru de 6 m înălțime cu același volum?
Raza cilindrului cu o înălțime de 3 m este de 2 ori mai mare decât cea a cilindrului cu înălțimea de 6 m. Fie ca h_1 = 3 m să fie înălțimea și r_1 să fie raza celui de-al cilindrului. Fie ca h_2 = 6m să fie înălțimea și r_2 să fie raza celui de-al doilea cilindru. Volumul cilindrilor este același. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 sau h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 sau (r_1 / r_2) ^ 2 = 2 sau r_1 / r_2 = sqrt2 sau r_1 = sqrt2 * r_2 Raza cilindrului de 3 m înalt este de 2 ori mai mare decât cea a cilindrului de 6 m [Ans]
Suprafața părții laterale a unui cilindru drept poate fi găsită prin înmulțirea de două ori a numărului pi de raza ori înălțimea. Dacă un cilindru circular are o rază f și o înălțime h, care este expresia care reprezintă suprafața marginii sale?
= 2pifh = 2pifh
Volumul V, în unități cubice, al unui cilindru este dat de V = πr ^ 2h, unde r este raza și h este înălțimea, atât în aceleași unități. Găsiți raza exactă a unui cilindru cu o înălțime de 18 cm și un volum de 144p cm3. Exprimați răspunsul în cel mai simplu mod?
R = 2sqrt (2) Știm că V = hpir ^ 2 și știm că V = 144pi și h = 18 144pi = 18pir ^ 2 144 = 18r ^ 2 r ^ 2 = 144/18 = 8 r = ) = sqrt (4 * 2) = sqrt (4) sqrt (2) = 2sqrt (2)