Simplificați (x-2) / (x ^ 2 + 6x + 9) - (x + 2) / (2x ^ 2-18)?

Simplificați (x-2) / (x ^ 2 + 6x + 9) - (x + 2) / (2x ^ 2-18)?
Anonim

Răspuns:

# (X ^ 2-15x + 6) / (2 (x-3) (x + 3) ^ 2) #

Explicaţie:

# X ^ 2 + 6x + 9 = (x + 3) (x + 3) = (x + 3) ^ 2 #

# 2x ^ 2-18 = 2 (x ^ 2-9) = 2 (x-3) (x + 3) #

Diferența a 2 pătrate # (A-b) (a + b) = a ^ 2-b ^ 2 #

/ (X + 3) ^ 2 (x + 2) / (2 (x-3) (x + 3)) # # (x-2)

Înmulțit cu # 2 (x-3) (x + 3) ^ 2 #

= / (2 (x-3) (x + 3) ^ 2) # - # ((x + 2) (x + 3) (2) (x-3) (x-2))

Extindeți parantezele

= # (2 (x ^ 2-5x + 6) - (x ^ 2 + 5x + 6)) / (2 (x-3) (x + 3) ^ 2) #

Extindeți mai departe parantezele

= # (2x ^ 2-10x + 12 x ^ 2-5x-6) / (2 (x-3) (x + 3) ^ 2) #

Simplifica

= # (X ^ 2-15x + 6) / (2 (x-3) (x + 3) ^ 2) #