Răspuns:
Din același motiv, este mai ușor să focalizați atunci când măriți imaginea, decât să micșorați imaginea.
Explicaţie:
Utilizarea obiectivului cu putere redusă (LPO) ne oferă o imagine de ansamblu a unui eșantion. Dacă există ceva specific pe care doriți să îl observați, ar fi mai ușor să îl identificați mai întâi utilizând LPO și apoi apropiați-l folosind obiectivul de înaltă putere (HPO).
Biblioteca îți percepe o amendă când întorci târziu o carte de bibliotecă. Dacă este întârziată o zi, veți fi taxat (ă) cu 0,15 $, în cazul în care întârzieți cu două zile, veți fi taxat (ă) 0,30 $. Datoria bibliotecii este de 3,75 $. Câte zile sunt întârziate în biblioteca dvs.?
25 de zile ... ... pur și simplu împărți 3.75 de .15, dând 25 de zile. Ar trebui să vă fie rușine că l-ați păstrat atât de mult!
Clasa a șaptea a ridicat 910 dolari pentru a ajuta la îmbunătățirea unui adăpost local de animale. Aceasta este 28% din obiectivul adăpostului. Care este obiectivul de strângere de fonduri al adăpostului?
3250 Cea mai ușoară cale de a face acest tip de întrebare este folosirea proporției directe. Dacă 910 dolari reprezintă 28%, atunci cât de mult reprezintă 100%? 910/28 = x / 100 "" larr acum încrucișați înmulțim 28x = 910xx100 x = (910xx100) / 28 x = 3250 $ Rețineți că 910 div 28 vă spune ce este 1% și când știți că puteți multiplica cu orice număr de% pe care doriți să o găsiți. Verificați: Este 28% din 3250 egal cu 910? 28/100 xx 3250 = 910
Când un obiect este plasat la 8 cm de la un obiectiv convex, o imagine este capturată pe un ecran la 4com de la obiectiv. Acum, obiectivul este deplasat de-a lungul axei sale principale în timp ce obiectul și ecranul sunt menținute fixe. În cazul în care obiectivul ar trebui să fie mutat pentru a obține un alt clar?
Distanta obiectului si distanta de imagine trebuie schimbate. Forma comună a ecuației lentilei Gauss este dată ca 1 / "Distanța obiectului" + 1 / "Distanța imaginii" = 1 / "lungimea focală" sau 1 / "O" + 1 / "I" = 1 / se obtine 1/8 + 1/4 = 1 / f => (1 + 2) / 8 = 1 / f => f = 8 / 3cm Acum lentilele sunt mutate, ecuatia devine 1 / / "I" = 3/8 Vedem că numai o altă soluție este distanța obiectului și distanța de imagine sunt schimbate. Prin urmare, dacă distanța obiectului este făcută = 4 cm, se va forma o imagine clară la 8 cm