Cum diferențiați sqrt ((x + 1) / (2x-1))?

Cum diferențiați sqrt ((x + 1) / (2x-1))?
Anonim

Răspuns:

# - (3 (x + 1)) / (2 (2x1) ^ 2 sqrt ((x + 1)

Explicaţie:

#f (x) = u ^ n #

#f '(x) = nxx (du) / dx xxu ^ (n-1) #

În acest caz:# sqrt ((x + 1) / (2x-1)) = ((x + 1) / (2x-1)

#n = 1/2, u = (x + 1) / (2x-1) #

# d / dx = 1/2 xx (1xx (2x1) - 2xx (x + 1)) / (2x1) ^ 2xx (x + 1) 2-1) #

# 1 / 2xx (-3) / ((2x-1) ^ 2 xx ((x + 1) / (2x-1)

(X + 1) / (2 (2x1) ^ 2 ((x + 1) / (2x-1)