Răspuns:
Explicaţie:
Prima observație că:
(Sqrt (n + 1) + sqrt (n)) = sqrt (n + 1) -sqrt (n) 1) -sqrt (n)) #
(n + 1) -sqrt (n)) / ((n + 1) -n) #)
#color (alb) (1 / (sqrt (n + 1) + sqrt (n))) = sqrt (n + 1)
Asa de:
# 1 / (sqrt (144) + sqrt (145)) + 1 / (sqrt (145) + sqrt (146)) + … + 1 / (sqrt (168) + sqrt (169)) #
# = (Sqrt (145) -sqrt (144)) + (sqrt (146) -sqrt (145)) + … + (sqrt (169) -sqrt (168)) #
# = sqrt (169) -sqrt (144) #
#=13-12#
#=1#